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ABSTRACT
Risk factors of type 2 diabetes mellitus (T2D) and cardiovascular disease (CVD) cluster together and are
termed the metabolic syndrome. Key factors driving the metabolic syndrome are inflammation, oxidative
stress, insulin resistance (IR), and obesity. IR is defined as the impairment of insulin to achieve its
physiological effects, resulting in glucose and lipid metabolic dysfunction in tissues such as muscle, fat,
kidney, liver, and pancreatic b-cells. The potential of rooibos extract and its major C-glucosyl flavonoids, in
particular aspalathin, a C-glucoside dihydrochalcone, as well as the phenolic precursor, Z-2-(b-D-
glucopyranosyloxy)-3-phenylpropenoic acid, to prevent the metabolic syndrome, will be highlighted. The
mechanisms whereby these phenolic compounds elicit positive effects on inflammation, cellular oxidative
stress and transcription factors that regulate the expression of genes involved in glucose and lipid
metabolism will be discussed in terms of their potential in ameliorating features of the metabolic
syndrome and the development of serious metabolic disease. An overview of the phenolic composition of
rooibos and the changes during processing will provide relevant background on this herbal tea, while a
discussion of the bioavailability of the major rooibos C-glucosyl flavonoids will give insight into a key
aspect of the bioefficacy of rooibos.
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Introduction

In recent years, great emphasis has been placed on phytochemi-
cals, including those present in dietary sources, to play a role in
strategies aimed at prevention and protection against risk fac-
tors associated with obesity and diabetes (Wolfram et al., 2006;
Pinent et al., 2008; Thielecke and Boschmann, 2009). Polyphe-
nols, in particular flavonoids, are increasingly under scientific
scrutiny for their potential beneficial effects on obesity and dia-
betes related conditions (Malviya et al., 2010; Yun, 2010). Phar-
macologically, the beneficial effects are related to their ability to
act as antioxidants (Fraga et al., 2010) and to modulate cell sig-
naling cascades (Williams et al., 2004) and gene expression
(Kuo, 2002; Dong et al., 2010), underscoring their potential
preventative and protective roles against cardiovascular compli-
cations and diabetes. Specific effects relating to the metabolic
syndrome include protection of vulnerable cells such as pancre-
atic b-cells against increased oxidative stress and inflammation
associated with insulin resistance and obesity, and the regula-
tion of genes and proteins involving the glucose and lipid meta-
bolic pathways (Mueller and Jungbauer, 2009; Yun, 2010).

With mounting evidence of the antidiabetic properties of
rooibos extracts, the current review focuses on their potential
to prevent the metabolic syndrome. A summary of the use of
rooibos as herbal tea and food ingredient extract, its phenolic

composition and the changes during processing will provide
relevant background on the product. A discussion of the meta-
bolic syndrome from a molecular and biochemical perspective
will provide context for the beneficial in vitro and in vivo effects
observed for rooibos and its phenolic compounds. The absorp-
tion and metabolism of the major C-glucosyl flavonoids of
rooibos, and in particular aspalathin, a C-glucosyl dihydrochal-
cone, will be briefly discussed to give insight into a key aspect
of the bioefficacy of rooibos. The bioavailability of O-glycosyl
flavonoids, present in rooibos, has been the topic of many
papers and will not be covered here.

Rooibos

Use as herbal tea and food ingredient extract

Use of rooibos herbal tea, produced from the endemic South
African legume, Aspalathus linearis (Burm.f.) Dahlg., predates
1900. Anecdotal evidence collected in the late 1960s, indicating
that rooibos alleviates infantile colic, placed the spotlight on
rooibos as a healthy beverage (Joubert et al., 2008). Reports of
its antioxidant activity, combined with market hype surround-
ing the role of antioxidants as “anti-ageing” agents, further pro-
moted its image as a healthy drink during the past two decades.
Its caffeine-free status, which contributed to the popularity of
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rooibos by modern consumers (Joubert and de Beer, 2011), was
not always considered to be an advantage. A 1917 report on
rooibos by the Imperial Institute of London concluded “It
seems doubtful whether this material would be acceptable in
the United Kingdom as a substitute for ordinary tea, as it con-
tains no caffeine or other alkaloids and would subsequently not
have the stimulating effect of tea.” Today the United Kingdom
is one of the top importers of rooibos, and together with Ger-
many, the Netherlands, Japan, and the USA, represents more
than 80% of the export market (data supplied by South African
Rooibos Council, 2013).

The traditional product is comprised of the “fermented”
(oxidized) leaves and stems of Aspalathus linearis (Joubert
and de Beer, 2011). Prior to commercialization of an “unfer-
mented” variant, also known as green rooibos or “unfer-
mented” rooibos, the name “rooibos” referred to the
fermented product. Recent protection of the name “Rooibos”
in South Africa (Anon., 2013) and the subsequent recogni-
tion of its status as a geographical indication (GI) in the
European Union (Anon., 2014), not only offers ownership of
this particular name to South Africa, but it will ensure that
the term will be applicable only to rooibos products. Other
common names used by international markets are red bush
(translation of rooibos), red rooibos, and red tea. The latter
name can lead to confusion with other herbal teas such as
one prepared from the leaves of the hibiscus flower.
Although a misnomer, the terms “unfermented” and “fer-
mented” are widely used in the context of rooibos. In this
paper “green” and “fermented” will be used to make a clear
distinction between the two types of rooibos, as “fermenta-
tion” not only affects the sensory properties of this herbal
tea, but also composition and bioactivity. Extracts produced
from rooibos are used mainly as food ingredient in a variety
of products, including ready-to-drink iced teas, yoghurt,
“instant cappuccino” (Joubert and de Beer, 2011) and

recently also bread. Tinctures and food supplements contain-
ing rooibos extract are also on the market.

Phenolic composition and changes during processing

Aspalathin is the major flavonoid present in unprocessed rooi-
bos plant material and a characteristic chemical marker for
Aspalathus linearis. Its levels can vary extensively, depending
on various factors, including leaf-to-stem ratio. The aspalathin
content of separated stems and leaves showed a large difference,
i.e., 0.6 and 13.48% (on a dry weight (DW) basis), respectively
(Manley et al., 2006; Joubert et al., 2013). Most samples of a
large set of dried shoots contained between 2 and 6% aspalathin
(Manley et al., 2006). Other major compounds that accumulate
in the leaves at levels higher than 1% DW in the leaves are
nothofagin, another C-glucosyl dihydrochalcone, and the fla-
vone analogues of aspalathin, isoorientin and orientin, with iso-
orientin more abundant than orientin (Joubert et al., 2013).
These compounds also represent the major flavonoid constitu-
ents of extracts and infusions prepared from green rooibos
(Beelders et al., 2012b; Muller et al., 2012). The flavone ana-
logues of nothofagin, vitexin, and isovitexin are present at sub-
stantially lower levels than orientin and isoorientin (Table 1).
Other major compounds are several quercetin O-glycosides,
i.e., quercetin-3-O-robinobioside, rutin, hyperoside, and iso-
quercitrin, of which quercetin-3-O-robinobioside and rutin are
present in the highest quantities (Muller et al., 2012). Together
the quercetin O-glycosides could comprise as much as 1.34% of
the extract.

Another compound of interest present in rooibos is the eno-
lic phenyl pyruvic acid glucoside (PPAG; Z-2-(b-D-glucopyra-
nosyloxy)-3-phenylpropenoic acid; Table 1), a precursor in the
biosynthesis of flavonoids (Marais et al., 1996). Although per
definition not phenolic due to the absence of a hydroxyl moiety
on the phenyl ring, its occurrence in rooibos extracts and

Table 1. Flavonoid and phenyl pyruvic acid glucoside (PPAG) content of green and fermented rooibos extracts and infusions.

Extract (g/100 g)a Infusion (mg/L)b

Compound Greenc Fermented Greenf Fermented (n D 114)g

C-Glucosyl dihydrochalcones
Aspalathin 11.949 0.59 (nd – 2.79)e 157.71 (78.32 – 250.75) 5.84 (ndh – 15.66)
Nothofagin 1.397 0.03 (nd – 0.18)e 18.90 (6.37 – 33.30) 0.95 (nd – 2.76)
C-Glucosyl flavones
Orientin 1.057 1.01 (0.69 – 1.16)e 9.99 (4.31 – 18.32) 10.84 (10.33 – 14.31)
Isoorientin 1.432 1.07 (0.34 – 1.41)e 15.38 (6.61 – 29.48) 15.03 (7.40 – 20.47)
Vitexin 0.150 0.069d 2.13 (0.83 – 4.00) 2.33 (1.30 – 3.32)
Isovitexin 0.176 0.152d 2.80 (1.15 – 5.43) 2.40 (1.35 – 3.29)
O-Glycosyl flavonols
Quercetin-3-O-rutinoside (rutin) 0.358 0.185d 5.45 (2.84 – 8.49) 1.65 (nd – 5.71)
Quercetin-3-O-robinobioside 0.696 0.446d 10.72 (3.99 – 18.86) 8.34 (0.89 –18.41)
Quercetin-3-O-galactoside (hyperoside) 0.124 0.087d 1.95 (0.42 – 4.23) 2.22 (nd – 6.79)
Quercetin-3-O-glucoside (isoquercitrin) 0.159 0.063d 2.71 (0.82 – 5.10) 1.08 (nd – 5.79)
Phenylpropenoic acid glucoside
PPAG 0.266 0.57 (0.09 – 0.81)e 5.37 (2.22 – 10.05) 6.91 (2.72 – 14.81)

aExtraction – extracted plant material with water at 1:10 solid:solvent ratio for >90�C/30 min
bInfusion – infused 2.5 g plant material in 200 mL freshly boiled water for 5 min equalling “cup-of-tea” strength
cMuller et al. (2012) (n D 3)
dMazibuko et al. (2013) (n D 1)
eJoubert et al. (2013) (n D 18)
fBeelders et al. (2012b) (n D 10); data were converted to mg/L taking into account soluble solids content of infusions
gJoubert et al. (2012) (n D 114)
hNot detected

2 C. J. F. MULLER ET AL.



infusions deserves attention due to recent demonstration of
antidiabetic properties for this compound (Muller et al., 2013;
Mathijs et al., 2014). Leaves of green rooibos contain from
“undetectable” levels of PPAG to 1.11% DW (Joubert et al.,
2013). Hot water extracts (Muller et al., 2013) and the soluble
solids of hot water infusions (Beelders et al., 2012b), prepared
from green rooibos, contain up to 0.44% PPAG, making it one
of the major constituents.

Comprehensive analysis of a hot water infusion of green
rooibos demonstrated the presence of many minor compounds,
previously also identified in fermented rooibos (Beelders et al.,
2012b). Compounds identified included a C-50-hexosyl deriva-
tive of aspalathin (tentative identification), dihydro-orientin,
dihydro-isoorientin (R and S configuration), chrysoeriol, luteo-
lin, luteolin-7-O-glucoside, carlinoside, neocarlinoside, isocarli-
noside, vicenin-2, patuletin-7-O-glucoside, phenolic acids,
lignans, and coumarins. The presence of many unidentified
compounds was demonstrated, using two-dimensional high-
performance liquid chromatography (2-D HPLC) (Beelders
et al., 2012a). Occurence of dihydro-orientin and dihydro-iso-
orientin in green rooibos (Beelders et al., 2012b) suggests their
natural presence in the plant material or formation due to oxi-
dative changes during preparation of the infusion. These com-
pounds are intermediate oxidation products of aspalathin in
the formation of orientin and isoorientin (Marais et al., 2000;
Krafczyk and Glomb, 2008).

Little structural information is available on the polymeric
fraction of rooibos, which elutes as a poorly defined “hump” on
1-D and 2-D HPLC chromatograms (Beelders et al., 2012a). It
contains the presence of an irregular procyanidin type hetero-
polymer, consisting of (C)-catechin and (¡)-epicatechin chain
extending units and (C)-catechin terminal unit (Marais et al.,
1998).

Oxidative changes to the phenolic composition of rooibos
form an essential part of the traditional “fermentation” process,
employed to produce fermented rooibos (Joubert, 1996). This
product has a red-brown leaf and infusion color. Its hot water
infusion at a “cup-of-tea” equivalent strength has a slightly
sweet taste, subtle astringency, and flavor with predominant
honey, woody, and herbal-floral notes (Koch et al., 2013).
While the changes during fermentation are desirable from a
sensory perspective, the aspalathin content of the plant material
is rapidly reduced to less than 10% of that originally present in
the plant material (Joubert, 1996). It is converted to orientin
and isoorientin via flavanone intermediates (Koeppen and
Roux, 1965; Marais et al., 2000; Krafczyk and Glomb, 2008).
Follow-up studies provided further insight into the chemical
conversion of aspalathin to dimers and high molecular weight,
brown end products. Nothofagin also oxidises to form brown
products, but at a much slower rate (Krafczyk et al., 2009a;
Heinrich et al., 2012).

Given the susceptibility of aspalathin and nothofagin to oxi-
dation, it is not surprising that extracts and infusions prepared
from fermented rooibos have relatively low aspalathin and
nothofagin contents (Table 1). An extract and infusion pre-
pared from fermented rooibos, demonstrated to have bioactiv-
ity (Mazibuko et al., 2013; Sanderson et al., 2014), contained
less aspalathin than orientin and isoorientin. Analysis of a large
number of hot water extracts confirmed the relative quantities

for these compounds (Joubert and de Beer, 2012; Joubert et al.,
2013). Similarly, infusions at “cup-of-tea” strength had higher
levels of the flavones than the dihydrochalcones (Joubert et al.,
2012) (Table 1).

Bioavailability of rooibos C-glucosyl flavonoid

Bioefficacy of bioactive food compounds depends on their bio-
availability (absorption, distribution, metabolism, and excre-
tion) as they need to reach the site of action (Manach et al.,
2005). Many factors limit or enhance absorption of polyphe-
nols in the digestive tract, such as the interaction with other
dietary ingredients (Rein et al., 2012). Bioefficacy of flavonoids
in in-vivo studies could, therefore, be expected to depend on
the manner of their consumption, i.e., as part of a complex
mixture such as a plant extract or a purified compound mixed
into the feed, drinking water or through orogastric gavage of
experimental animals. The various factors affecting bioavail-
ability lead to disparity in efficacy results between in vitro and
in vivo studies.

Considering Lipinski’s Rule of Five (Lipinski et al., 1997)
and other physicochemical parameters such as the number of
rotatable bonds and polar surface area (Veber et al., 2002),
poor absorption of rooibos C-glucosyl flavonoids is to be
expected. Absorption of aspalathin in a Caco-2 monolayer cell
model improved when present in green rooibos extract as
opposed to the pure compound (Huang et al., 2008), indicating
that other plant components present in the extract may assist
in its transport across the membrane. Courts and Williamson
(2013) noted in their review on C-glycosyl flavonoids that
Caco-2 model transport studies carried out in their laboratory
showed passive diffusion of aspalathin across the intestinal epi-
thelial monolayer without evidence of deglycosylation. Conju-
gation of aspalathin and nothofagin in the liver were
demonstrated when treated with microsomal and cytosolic sub-
cellular liver fractions (Van der Merwe et al., 2010). Two glu-
curonidated metabolites and one sulfated metabolite were
observed for aspalathin. Based on the disappearance of radical
scavenging ability of conjugated aspalathin when tested in an
on-line HPLC antioxidant system, the catechol group on the B-
ring was identified as the likely site of conjugation. Nothofagin,
lacking the catechol group, also formed two glucuronidated
metabolites, but the extent of conversion was less and no sul-
fated conjugate was formed.

In vivo studies on the oral bioavailability of aspalathin
showed evidence of phase II metabolites in blood circulation.
Its oral bioavailability was first evaluated in vivo, using the pig
as model (Kreuz et al., 2008). No aspalathin or metabolites
could be detected in the plasma of pigs fed an aspalathin-
enriched, green rooibos extract (equaling 157–167 mg aspala-
thin/kg body weight/day) for 11 days. Several metabolites were
found in the urine, demonstrating that deglycosylation of aspa-
lathin is not a prerequisite for its absorption. Aspalathin conju-
gated with a methyl group or glucuronic acid or both was
present in the urine. The aglycones of aspalathin and dihydro-
(iso)orientin were also present in the urine. This was attributed
to the liberation of the aglycones by colonic microflora. When
the pigs received a three times higher, but single dose of the
same aspalathin-enriched green rooibos extract, a trace amount
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of aspalathin was detected in the plasma (Kreuz et al., 2008).
Unpublished results from a preliminary study of the bioavail-
ability of aspalathin in Vervet monkeys by our group showed
that the plasma from a male contained very low concentrations
of methylated aspalathin and dimethylated aspalathin. The
monkeys received a single dose of aspalathin-enriched green
rooibos extract, mixed with a bolus of food to deliver 25 mg
aspalathin/kg body weight.

Three human studies on the bioavailability of rooibos phe-
nolics have been done to date. Urine of subjects who consumed
a single serving of 300 mL of green rooibos (91.2 mg aspalathin)
excreted 0.74% of the total aspalathin consumed over a 12-h
period in the form of 3-O-methylaspalathin and 3-O-methyl
aspalathin glucuronide, with the first metabolite predominant.
The mean maximum concentration for both compounds in the
urine occurred within 2 h after ingestion of the beverage, equal-
ing 162 mg of 3-O-methylaspalathin and 87 mg of 3-O-methyl-
aspalathin glucuronide (Courts and Williamson, 2009). In
another human study, eight metabolites were detected in the
urine after ingestion of rooibos (Stalmach et al., 2009). In this
case, 500 mL of green and fermented rooibos beverages were
consumed on different occasions by the same subjects. The
results confirmed the findings of previous studies, showing O-
linked conjugation of aspalathin with methyl and glucuronide
groups. Additionally, sulfate conjugates were also detected. The
main metabolite excreted following ingestion of green rooibos
was an O-methyl-aspalathin-O-glucuronide, while eriodictyl-O-
sulfate was the main metabolite after ingestion of fermented
rooibos. Higher levels of the eriodictyol glucosides were present
in the fermented rooibos beverage. In spite of relatively high lev-
els of nothofagin in the green rooibos beverage no derivatives or
metabolites of nothofagin were detected in the urine of the sub-
jects. In this case overall metabolite levels excreted over a 2-h
collection period accounted for 0.09 and 0.22% of the flavonoids
in the fermented and green rooibos beverages, respectively.

Urinary excretion of aspalathin metabolites occurred mainly
within 5 h of consumption of the beverages, while excretion of
eriodictyol-O-sulfate occurred mainly during the 5–12 h urine
collection period. These results indicated different sites of
absorption, i.e., the small and large intestines, respectively. No
flavonoid metabolites were detected in the plasma. Courts and
Williamson (2013) pointed out that these results are at odds
with common observation of circulating aglycone flavonoid
metabolites in human plasma following ingestion of O-glycosyl
flavonoids. Both Kreuz et al. (2008) and Courts and Williamson
(2013) noted that strong affinity of the compounds for plasma
carrier proteins such as serum albumin may be the reason for
undetectable levels in plasma. In the most recent human study,
the presence of aspalathin was demonstrated in the plasma after
the subjects drank 500 mL of green rooibos infusion, containing
287 mg aspalathin (Breiter et al., 2011). Other C-glucosyl com-
pounds found in the plasma were orientin, isoorientin, vitexin,
isovitexin, and (S)-eriodictyol-8-C-glucoside. Its (R/S)-6-C-iso-
mers were also detected in the plasma of some of the subjects.
Although nothofagin was present in a higher quantity in the
infusion than orientin and isoorientin, it was not detected in the
plasma. Interestingly, when an isolated fraction of green rooibos
(reconstituted in water) was consumed by the same subjects, the
amounts of flavonoids detected appeared to be generally lower
than when the green rooibos infusion was consumed, despite
comparable intake of total flavonoids, suggesting that the com-
position of the beverage played a role in the absorption of the
flavonoids. Recovery of aspalathin in the plasma after consump-
tion of the green rooibos infusion was 0.2%. Breiter et al. (2011)
postulated that matrix and synergetic effects may be responsible
for this disparity. Table 2 summarizes the major bioavailability
results of aspalathin from animal and human studies.

An absorption, tissue distribution, metabolism and excre-
tion (ADME) study performed on rats using a crude extract of
bamboo, provides some insight into the bioavailability of

Table 2. Presence of aspalathin and metabolites in plasma and urine of animals and humans after consumption of rooibos extract and infusions.

Model Aspalathin dose Dosage form Plasma Urine Excretion in urine Reference

Pig 157–167 mg/kg
BW

Aspalathin-enriched green
rooibos extract (16.3%),
mixed with feed

nd Aspalathin; aspalathin-O-GlcA;
Me-O-aspalathin; Me-
O-aspalathin-O-GlcA;
aspalathin aglycone-O-GlcA

(Kreuz et al., 2008)

Vervet
monkey

25 mg/kg BW Aspalathin-enriched green
rooibos extract (18.4%)
mixed with bolus

Me-O-aspalathin;
di-Me-O-
aspalathin

Me-O-aspalathin; di-Me-
O-aspalathin

Unpublished

Human 91 mg/subject 300 mL of green rooibos
infusion

nd Me-3-O- aspalathin; Me-3-
O-aspalathin-O-GlcA

Max. conc. reached< 2
h after ingestion;
0.74% excreted
during 0–24 h

(Courts and
Williamson, 2009)

Human 41 mg/subject 500 mL green rooibos
“ready-to-drink” beverage

nd Aspalathin-O-GlcA (2x); Me-
O-aspalathin-O-GlcA (3x);
Me-O-aspalathin-O-sulfate;
aspalathin-O-sulfate

Most excreted< 5 h
after ingestion; 0.22%
excreted during 0–24
h

(Stalmach et al.,
2009)

Human 3.6 mg/subject 500 mL fermented rooibos
“ready-to-drink” beverage

nd Me-O-aspalathin-O-GlcA (3x);
Me-O-aspalathin-O-sulfate;
aspalathin-O-sulfate

0.09% excreted during
0–24 h

(Stalmach et al.,
2009)

Human 287 mg/subject Green rooibos beverage Aspalathin Aspalathin; Aspalathin-O-GlcA;
Me-O-aspalathin; Me-O-
aspalathin-O-GlcA (3x);
Me-O-aspalathin-O-sulfate;
aspalathin-O-sulfate;
aspalathin aglycone-O-GlcA

0.2% excreted during
0–24 h

(Breiter et al., 2011)

Abbreviation: BW, body weight; GLcA – Glucuronic acid; Me- methyl
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orientin, isoorientin, vitexin and isovitexin. These C-glucosyl
flavones also showed poor gastrointestinal absorption as none
could be detected in the blood and urine of the rats, with more
than 50% of the compounds eliminated from the gastrointesti-
nal tract in the original form within 12 h (Zhang et al., 2007).
The C-glucosyl flavones were also not detected in the brain,
liver, kidney and thigh muscle of the rats. Another rat study
confirmed that no orientin was detected in the plasma after
oral administration of the pure compound, while intravenous
injection resulted in its rapid distribution to tissue and elimina-
tion from plasma within 90 min (Li et al., 2008).

Given the poor intestinal absorption of these C-glucosyl
compounds, catabolism by gut microflora could play an impor-
tant role in their bioactivity. Anaerobic incubation of isoorien-
tin with an isolate of human intestinal bacteria showed its
conversion through hydrogenation of the 2,3-double bond on
the C-ring to form the flavanone, eriodictyol 6-C-glucoside, fol-
lowed by cleavage of the C-glucosyl bond to form the aglycone,
eriodictyol. Subsequently, ring fission of the flavanone formed
3-(3,4-dihydroxyphenyl)-propionic acid (hydrocaffeic acid)
and phloroglucinol. Direct conversion of isoorientin to luteolin
via direct cleavage of the C-glucosyl bond was identified as a
minor metabolic process (Hattori et al., 1988). A later study,
investigating the metabolic fate of orientin, isoorientin, vitexin,
and isovitexin in rats, proposed the same metabolic pathways
(Zhang et al., 2007). End products of vitexin and isovitexin
were apigenin, phloroglucinol, and phloretic acid.

Studies on human gut microbiota, able to deglycosylate vari-
ous C-glycosyl compounds, have led to the identification of sev-
eral bacteria (Sangul et al., 2005; Braune and Blaut, 2011, 2012;
Nakamura et al., 2011; Kim et al., 2014). Eubacterium cellulo-
solvens, an anaerobic cellulolytic bacterium, isolated from mice,
rabbits, sheep, and cow, can cleave isoorientin and isovitexin to
form their aglycones, luteolin, and apigenin, respectively, while
their C6 analogues, orientin, and vitexin, are not degraded
(Braune and Blaut, 2012), indicating that the position of the

sugar moiety is important. However, the position of the sugar
did not affect the human bacterial strain CG19-1 as it was able
to remove the sugar moiety of these C-glucosyl flavones and
degrade their aglycones, luteolin, and apigenin, to hydrocaffeic
acid and phloretic acid, respectively (Braune and Blaut, 2011).
Eubacterium ramalus and Clostridium orbiscindens, strict anaer-
obic bacteria isolated from human feces, are able to catalyze the
degradation of luteolin and eriodictyol to hydrocaffeic acid and
phloroglucinol, with the latter compound further degraded to
acetate and butyrate (Braune et al., 2001; Schoefer et al., 2003).

Given the ready conversion of aspalathin to its flavanone
and flavone analogues at neutral pH (Krafczyk and Glomb,
2008) it would encounter in the small intestine, it can be postu-
lated that its microbial biotransformation by human intestinal
bacteria will follow the same pathway outlined here for its oxi-
dation products (Fig. 1), thus leading ultimately to the forma-
tion of hydrocaffeic acid and organic acids in the colon.

Metabolic disease and relevance of plant based
therapies

Noncommunicable diseases (NCDs), driven by the obesity and
type 2 diabetes (T2D) epidemics, are the foremost cause of
death globally, leading to more deaths each year than all other
diseases combined (WHO, 2012). The escalation in the inci-
dence of diabetes has been grossly underestimated as the
347 million adult diabetics in 2008 already exceeded the
285 million estimated for 2010 (Shaw et al., 2009; Danaei et al.,
2011). Deaths attributable to cardiovascular disease (CVD) are
almost double for diabetics compared to the general population
(Peters et al., 2014). Under-resourced low- and middle-income
countries (LMIC) are worst affected with over 80% of cardio-
vascular and type 2 diabetes related deaths occurring in LMIC.
These deaths are projected to increase globally, but the pro-
jected rates of increase are higher in LMIC than high-income
countries (HIC) (20 vs. 15% between 2010 and 2020). These

Figure 1. Schematic representation of the proposed metabolic breakdown pathway of aspalathin with R representing a b-D-glucopyranosyl moiety [Compiled from
Braune and Blaut (2011, 2012); Braune et al. (2001); Hattori et al. (1988); Krafczyk and Glomb (2008); Schoefer et al. (2003); Zhang et al. (2007)].
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often avoidable deaths occur at a younger age in LMIC than
HIC (29% of deaths occur before the age of 60 in LMIC com-
pared to 13% in HIC) (Peer et al., 2012; WHO, 2012).

In view of the long-term inefficacy, side-effects and cost of
modern oral antidiabetic agents, plant-based therapies for the
treatment and prevention of T2D are gaining considerable prom-
inence (Malviya et al., 2010). Therefore, drug discovery strategies
based on natural products and traditional medicines are re-
emerging as attractive options to discover new molecular entities,
which remain largely untapped within the chemical diversity of
the plant kingdom (Hays et al., 2008; Potterat and Hamburger,
2013). There is also a movement towards alternatives in the
form of rationally designed, carefully standardized, synergistic
traditional herbal formulations and botanical drug products, sup-
ported by robust scientific evidence (Patwardhan and Mashelkar,
2009). The use of conventional drugs in combination with natu-
ral products, specifically herbal medicines or supplements, as
adjunctive therapies to treat chronic disease such as diabetes, is
also gaining popularity world-wide (Dennis et al., 2009; Bradley
et al., 2011; Hasan et al., 2011; Mansukhani et al., 2014).

The multifactorial nature and complex pathophysiology of
metabolic diseases such as obesity and diabetes present major
hurdles for effective treatment of the underlying causative
pathologies. Current therapeutic approaches, due to their nar-
row pharmaceutical spectra, tend to target specific mechanisms,
while a broader approach such as that observed for complex
mixtures and phenolic compounds affect a broader range of
therapeutic targets which could be more effective to address
these metabolic diseases (Tiwari and Rao, 2002).

Metabolic syndrome—a molecular and biochemical
perspective

The metabolic syndrome is defined as a cluster of pathophysio-
logical features such as insulin resistance, obesity, dyslipidaemia,

hypertension, impaired glucose tolerance and chronic inflamma-
tion (Fig. 2). Together these features are regarded as major con-
tributing risk factors to serious disease including diabetes
mellitus and related comorbidities such as cardiovascular and
neural degenerative diseases (Miranda et al., 2005). Epidemiolog-
ically the metabolic syndrome is considered to be the major
underlying cause of the global epidemic of obesity, diabetes, and
cardiovascular disease (Zimmet et al., 2005).

Insulin resistance and hyperinsulinemia

Key causal factors underlying the metabolic syndrome are insu-
lin resistance (IR) and associated hyperinsulinemia (Reaven,
2005). IR is defined as the impairment of insulin to achieve its
physiological effects, including the stimulation of glucose
uptake and inhibition of hepatic glucose output. IR differen-
tially affects tissues such as muscle, fat, kidney, and liver
(Reaven, 2005). To compensate for IR and to maintain euglyce-
mia, the pancreatic b-cells produce more insulin, but this is at
the expense of the negative physiologic effects of hyperinsuline-
mia. IR-induced hyperinsulinemia acts, for example, on the
liver leading to hepatic steatosis and hepatic overproduction of
triglyceride-rich particles that results in an atherogenic lipopro-
tein profile characterized by hypertriglyceridemia, low high
density lipoprotein, and increased small dense low density lipo-
protein (LDL) (Reaven, 2005). In addition, hyperinsulinemia is
associated with vascular smooth hypertrophy, enhanced sym-
pathetic activity, and in the kidney increased sodium retention
resulting in increased blood pressure, providing a link between
IR and CVD (Semplicini et al., 1994; Reaven, 2005). In T2D the
link to CVD is further exacerbated by elevated postprandial
free fatty acids (FFA) that are strongly associated with endothe-
lial dysfunction (Heine and Dekker, 2002). This, together with
an atherogenic lipoprotein phenotype and high blood pressure
contributes to the two- to fourfold increase in CVD mortality

Figure 2. Schematic illustration of the close relationship between metabolic dysfunction, metabolic syndrome and development of type 2 diabetes. Common to all three
are glucose intolerance, lipid dysfunction, inflammation and oxidative stress. [Compiled from Kahn et al. (2014); Kahn et al. (2006)]. Abbreviation: HDL, high density
lipoprotein.
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for men and women with T2D (Heine and Dekker, 2002;
Grundy et al., 2004).

Obesity and inflammation

The incidence of obesity is increasing rapidly worldwide with
more than 1.9 billion adults being overweight and at least
600 million of them clinically obese (WHO, 2015). The inci-
dence of obesity in South Africa ranks third highest in the
world (Ng et al., 2014). In obese IR individuals, hyperplastic fat
tissue trigger adipose tissue inflammation by releasing proin-
flammatory cytokines like interleukin-6 (IL-6), tumor necrosis
factor alpha (TNF-a), interleukin-1beta (IL-1b), and several
chemokines including chemokine (C-C motif) ligand 2
(CCL2), chemokine (C-C motif) ligand 5 (CCL5), and chemo-
kine (C-X-C motif) ligand 1 (CXCL5) (Yao et al., 2014).
Increased levels of circulating lipid-reactive oxygen species
(ROS) are produced that attenuate insulin signaling and per-
petuate the metabolic syndrome (Sirikul et al., 2006; Silveira
et al., 2008). Obesity associated chronic systemic inflammation
causes endothelium dysfunction. The increased permeability of
endothelium results in the subendothelial deposition of LDL.
This initiates localized inflammatory responses in the vascular
wall and triggers plaque development and CVD (Yao et al.,
2014). The proinflammatory cytokine TNF-a, produced by the
adipocytes, directly affects adipocyte function by downregulat-
ing the activity of lipoprotein lipase and acyl CoA synthase,
enzymes responsible for the breakdown of triglyceride-rich lip-
oproteins and the synthesis of triglycerides. These functions are
essential for the normal function of adipocytes and the mainte-
nance of normolipidemia (Memon et al., 1998). In obese indi-
viduals PPAR-g, a key transcription factor involved in the
regulation of adipogenesis and adiposity, is also suppressed by
TNF-a (Rosen and MacDougald, 2006). Hyperadiposity or
excessive accumulation of adipose mass can be the result of an
increase in the number (hyperplasia) and/or an increase in the
size (hypertrophy) of adipocytes (fat cells). Hypertrophic obe-
sity has previously been shown to be more closely associated
with IR than hyperplastic obesity (Gustafson et al., 2009).

In obese individuals the limited capacity of adipose tissue
to properly store fat is over-run with resultant hyperlipid-
emia which leads to increased ectopic lipid storage in tis-
sues such as the liver and skeletal muscle (Snel et al., 2012).
Increased levels of circulating fatty acids exacerbate IR,
causing hyperinsulinemia. Elevated insulin levels, together
with increased endoplasmic reticulum (ER) stress and
inflammatory cytokines that activate IkB kinase/nuclear fac-
tor-kB (IKK/NF-kB) signaling, overstimulate de novo lipo-
genesis in muscle and liver via the transcription factor
sterol regulatory element-binding protein 1c (SREBP-1c)
(Dowman et al., 2010; Ferr�e and Foufelle, 2010). In obese
IR individuals, increased lipogenesis with decreased fatty
oxidation accounts for the accumulation of intrahepatocel-
lular triglycerides and lipid metabolites, causing nonalco-
holic hepatic steatosis (Dowman et al., 2010). In skeletal
muscle the accumulation of long chain FA acyl-CoA and its
by-products of oxidation, diacylglycerol (DAG) and ceram-
ides, promote the development and progression of insulin
resistance by interfering with the phosphorylation of

proteins involved in the insulin signaling pathway, includ-
ing insulin receptor substrate-1/2 (IRS-1/2), phosphatidyli-
nositol-3-kinase (PI3-kinase) and protein kinase C (PKC)
(Silveira et al., 2008). The increase of intramyocellular FFA
metabolites and associated lipotoxic mitochondrial dysfunc-
tion cause impaired fat oxidation and a decrease in meta-
bolic flux through the tricarboxylic acid cycle (Petersen
et al., 2004). In IR individuals decreased mitochondrial fat
oxidation and increased FFA influx into skeletal muscle
attenuate peripheral glucose uptake, leading to postprandial
hyperglycemia (Abdul-Ghani and DeFronzo, 2010).

b-cell dysfunction

Normal pancreatic b-cell function is regulated by complex
interactions between neural factors, blood glucose levels and
appropriate hormonal interactions (Ruiz and Haller, 2006). An
increase in blood glucose is the main initiator of insulin release
from b-cells. Persistent elevation of blood glucose (hyperglyce-
mia), however, results in loss of b-cell differentiation capacity,
b-cell dysfunction, and increased b-cell apoptosis (Blume et al.,
1995; Butler et al., 2003). b-cell dysfunction is caused by glu-
cose-induced b-cell overstimulation and oxidative stress related
to the increased demand for and synthesis of insulin (Bensel-
lam et al., 2012). Maintaining normoglycemia is thus essential
for normal pancreatic b-cell function and for the maintenance
of functional b-cell mass (Bensellam et al., 2012). The role of
protein and lipid glycation (advanced glycation end products)
(AGEs) as a major initiator of glucotoxic deterioration of b-cell
function and survival has been established. The accumulation
of ROS in b-cells can easily saturate the antioxidative systems
in these cells, since they are known to have low levels of free-
radical quenching enzymes such as glutathione peroxidase, cat-
alase, and superoxide dismutase (Gehrmann et al., 2010). In
addition, ROS activate pathways that initiate inflammation,
including PKC and NF-kB, which further exacerbate b-cell dys-
function (Goldin et al., 2006; Bensellam et al., 2012). ER stress
is also initiated under glucose (and lipid) overload, and is
reported to activate several signaling pathways, such as the
inflammatory c-Jun N-terminal kinases (JNK) and oxidative
response pathways (Montane et al., 2014). With oxidative stress
and inflammation playing such putative roles in b-cell dysfunc-
tion and failure, it is thus plausible that antioxidants or anti-
inflammatory compounds could improve or rescue b-cell func-
tion in T2D conditions. In fact, rooibos antioxidants, such as
aspalathin and luteolin, have been reported to protect b-cells
under diabetic conditions both in vivo and in vitro. Luteolin
was demonstrated to protect RIN-m5F b-cells against IL-1b
and interferon gamma IFNg-mediated cytotoxicity and to sup-
press nitric oxide production by suppressing inducible nitric
oxide synthase (iNOS) messenger RNA and protein expression
and inflammation via inhibition of NF-kB activation (Kim
et al., 2007). Aspalathin has been shown to stimulate insulin
secretion in RIN-5F pancreatic b-cells (Kawano et al., 2009)
and protect these cells against AGEs (Son et al., 2013). PPAG,
lacking the structural features required for potent free radical
scavenging ability, was also shown to protect mouse b-cells
against ER stress induced apoptosis by increasing the
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expression of the antiapoptotic protein B-cell lymphoma 2
(BCL-2) (Mathijs et al., 2014).

Health benefits of rooibos

Investigations into the health promoting properties of rooibos
and aspalathin have escalated during recent years. Several of
these studies specifically focused on their potential antidiabetic
and antiobesity properties. Table 3 summarizes findings of rele-
vant studies on rooibos extracts and infusions. Rooibos derived
compounds have been described to have several cellular effects
on gene and protein expression, particularly those associated
with glucose and lipid metabolism, as well as oxidative stress
and inflammation (Fig. 3). In Table 4 relevant activities of aspa-
lathin, nothofagin, their C-glucosyl flavone derivatives, the
aglycone of orientin and isoorientin, luteolin, as well as those of
PPAG are summarized. The antioxidant activity of rooibos fla-
vonoids, in particular in comparison to aspalathin, has been
covered in other papers (Von Gadow et al., 1997; Joubert et al.,
2004; Krafczyk et al., 2009b; Snijman et al., 2009) and will not
be discussed here.

Antidiabetic properties

Inhibition of a-glucosidase enzymes, which are present on the
brush border of the small intestine and hydrolyse disaccharides
and oligosaccharides into monosaccharides, has become a con-
trol strategy of postprandial elevation of blood glucose levels.
Use of a-glucosidase inhibitors (AGIs) is proposed as a first-
line therapy after diet failure in T2D patients, especially in
elderly patients (Scheen, 2003). A systematic literature review
and meta-analysis of randomized controlled trials of at least 12
weeks duration comparing a-glucosidase inhibitor monother-
apy in T2D patients led to the conclusion that AGIs such as
acarbose have a significant effect on glycemic control and insu-
lin levels (Van de Laar et al., 2005). Another systematic litera-
ture review and meta-analysis showed that acarbose reduces
the incidence of T2D in patients with impaired glucose toler-
ance (IGT) (Van de Laar et al., 2006). Adverse gastrointestinal
effects, especially flatulence, may limit their long-term use
(Scheen, 2003). Many phytochemicals, including flavonoids,
have been assessed for their a-glucosidase inhibitory activity,
showing in many instances promising results (Kumar et al.,
2011). Synergistic effects between acarbose and polyphenols
suggest benefits in terms of dose reduction of the drug (Boath
et al., 2012) and thus alleviation of side effects.

Muller et al. (2012) demonstrated inhibition of yeast a-glu-
cosidase by green rooibos extracts, containing high levels of
aspalathin. In the same study, an on-line HPLC-DAD-bio-
chemical detection method was employed to demonstrate
inhibitory activity for aspalathin. The extract with the highest
aspalathin content and inhibitory activity was subsequently
tested in vivo in streptozotocin (STZ)-induced diabetic rats.
Acute oral administration of the extract to these diabetic rats
induced a sustained reduction in plasma glucose over a 6-h
period. The extract tested at 25 mg/kg body weight showed a
glucose lowering effect comparable to that of the drug, metfor-
min, the most commonly prescribed hypoglycemic drug for
T2D. Apart from aspalathin, the extract contained relatively

high levels of other flavonoids with proven in vitro a-glucosi-
dase inhibitory activity. The flavonol O-glycosides, rutin and
isoquercitrin, inhibit both rat intestinal and yeast a-glucosidase
(Jo et al., 2009; Li et al., 2009b). A number of studies showed
a-glucosidase inhibitory activity for orientin, isoorientin,
vitexin and isovitexin, as well as their aglycones, luteolin, and
apigenin (Kim et al., 2000; Li et al., 2009a; Yao et al., 2011;
Choo et al., 2012; Ha et al., 2012; Chen et al., 2013). IC50 values
for the flavones and acarbose obtained in different studies vary
due to differences in experimental conditions, in particular the
origin of the enzyme (Oki et al., 1999) and whether the enzyme
is in a membrane-bound state or not (Oki et al., 2000). Results
should, therefore, be interpreted with caution. Luteolin, for
example, showed higher inhibition of yeast a-glucosidase than
acarbose (Kim et al., 2000), yet a dose of more than 200 mg/kg
was required to elicit a postprandial reduction in blood glucose
levels of Sprague-Dawley rats administered 2 g/kg of sucrose,
while acarbose administered at 3 mg/kg resulted in a significant
reduction of blood glucose levels (Matsui et al., 2002). The lack
of activity of luteolin was attributed to the membrane-bound
state of the enzyme in vivo (Matsui et al., 2002). Treatment of
sugar-loaded STZ-induced diabetic mice required 20 mg/kg
isovitexin and 50 mg/kg vitexin to reduce blood glucose levels
significantly. Their effective human equivalent dose, based on
the body surface normalisation method (Reagan-Shaw et al.,
2008), equals 3.3 and 8.1 mg/kg body weight, respectively.
Much higher levels, i.e., 100 and 200 mg/kg of isovitexin and
vitexin, respectively, were required to have a similar effect on
blood glucose levels than acarbose at 5 mg/kg (Choo et al.,
2012). In an in vitro study, using yeast a-glucosidase, vitexin
was more effective than isovitexin and both substantially more
effective than acarbose (Li et al., 2009a). The latter study pro-
vided some insight into structural features of flavones affecting
inhibitory activity. Apart from the 5,7,40-trihydroxyflavone
structure that is crucial for activity, the C30-OH group of the B-
ring increased the a-glucosidase inhibitory activity, while gly-
cosylation at the C6 or C8 position of the A-ring reduced the
inhibitory effect. Orientin was less active than isoorientin, and
vitexin less active than isovitexin, indicating that the position
of the glucose moiety is important. Xiao et al. (2012), reviewing
a-glucosidase inhibition by various polyphenols, concluded
that the C2 D C3 double bond of flavonoids is also an impor-
tant structural feature contributing to enhanced activity com-
pared to compounds with a saturated bond.

Kawano et al. (2009) demonstrated that aspalathin increases
glucose uptake in muscle cells and insulin secretion from pan-
creatic b-cells. In addition to muscle cells, the activity of aspala-
thin on glucose uptake and utilization was also demonstrated in
liver and fat cells (Mazibuko et al., 2015). Beltr�an-Deb�on et al.
(2011) demonstrated a hypolipidemic effect for rooibos in
LDLr-/- mice fed a high fat diet, but this effect was stringently
dependent on diet type. At a molecular level aspalathin resensi-
tized insulin signaling suppressed by palmitate via protein
kinase B (PKB, also known as Akt) and activated the insulin-
independent AMPK pathway, culminating in increased glucose
uptake via GLUT4 (Mazibuko et al., 2015). Son et al. (2013),
using L6 myotubes, reported that aspalathin increased glucose
uptake by increasing AMPK phosphorylation and GLUT4
translocation to the membrane. They also demonstrated that
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aspalathin protected against ROS generated by AGEs in RIN-5F
rat insulinoma cells. While Kamakura et al. (2015) and Son
et al. (2013) reported that both aspalathin and an aspalathin-
rich green rooibos extract (GRE) could protect b-cells from
ROS-induced dysfunctions or cell death through their antioxi-
dant activities, this extract showed a stronger effect than aspala-
thin alone. For example, GRE, at the equivalent aspalathin
concentration as used for testing of the pure compound,
decreased intracellular peroxide levels twice as effective as aspa-
lathin itself. This could possibly be due to additive or synergis-
tic effects of the various polyphenols present in the extract. In
fact, Muller et al. (2012) reported synergistic effects between
aspalathin and rutin on blood glucose levels. Based on these
results, we performed transcriptomic analyses of pancreatic
b-cells treated with aspalathin or GRE to obtain some insights
into molecular mechanisms for synergy among compounds in
GRE (unpublished results). Rat insulinoma cells, i.e., RIN-5F
cells, were cultured in the presence or absence of 50 mM aspala-
thin or 350 mg/mL of GRE (equaling ca 50 mM aspalathin) for
24 h, and total RNA was prepared from each. More than 350
differentially expressed genes (DEGs) were detected in treated
cells. In aspalathin-treated cells, 353 DEGs (117 upregulated
and 236 downregulated) and in the GRE-treated cells, 381
DEGs (153 upregulated and 228 downregulated) were detected.
Among those, 83 DEGs were common between aspalathin- and
GRE-treated cells. Gene ontology (GO) term analyses of those
DEGs revealed the involvement of metal ion binding proteins,
transcription factors, and apoptosis-related proteins in aspala-
thin- or GRE-induced changes, suggesting that both aspalathin
and GRE can protect b-cells by changing specific gene expres-
sion. Both aspalathin and GRE suppressed the expression of

synaptotagmin-like 4 gene (Syl4). Syl4 is reported to regulate
the secretory pathway and to stimulate insulin secretion when
its expression was suppressed (Izumi et al., 2007). We have
already confirmed the stimulatory effects of aspalathin and
GRE on insulin secretion in RIN-5F cells (Son et al., 2013). The
transcriptomic analyses suggest that both aspalathin and GRE
have protective effects at the transcription level.

Further, in the obese insulin resistant ob/ob mouse model,
aspalathin reduced fasting blood glucose levels, increased adi-
ponectin levels, and reduced hypertriglyceridemia and serum
thiobarbituric acid reactive substances (TBARS) levels, a
marker of ROS. In addition, enzymes related to gluconeogene-
sis, glycogenolysis, and lipogenesis were reduced by aspalathin,
while the mRNA expression of glycogen synthase was increased
in the liver of these obese IR mice (Son et al., 2013).

The inhibitory effects of O- and C-glycosyl flavonoids on
SGLT2 and SGLT1 are crucial for understanding the value of
these flavonoids as possible hypoglycemic agents. In silico
docking scores of orientin, isoorientin, luteolin, and apigenin
indicated these compounds to be better inhibitors of SGLT2
than dapagliflozin, a known inhibitor of SGLT2 (Annapurna
et al., 2013). Phloridzin (phloretin-20-O-glucoside), a nonselec-
tive SGLT1 and SGLT2 inhibitor, has been shown to protect
against the deleterious effects of diabetic cardiomyopathy in
db/db mice (Cai et al., 2013). However, O-glycosyl flavonoids
are vulnerable to hydrolysis in the gut, while C-glycosyl deriva-
tives such as aspalathin are generally more metabolically stable
and should have greater bioactivity in vivo (Zhou et al., 2010).
The activation of AMPK by aspalathin and other rooibos phe-
nolic compounds, as well as PPAG, has profound metabolic
implications. Similar to the effects of metformin, polyphenols

Figure 3. The most common cellular effects of the rooibos C-glucosyl dihydrochalcones, and other related compounds on gene and protein expression, particularly those
affecting glucose and lipid metabolism, oxidative stress, inflammation and cell death. [Compiled from Choi et al. (2014a); Choi et al. (2014b); Dludla et al. (2014); Fidan
et al. (2009); Francisco (2010); Fu et al. (2006); Hendricks and Pool (2010); Kamakura et al. (2015); Kim et al. (2007); Kim et al. (2010); Kunishiro et al. (2001); Lee et al.
(2014); Marnewick et al. (2011); Mathijs et al. (2014); Mazibuko et al. (2015); Mazibuko et al. (2013); Mueller et al. (2010); Mueller and Jungbauer (2009); Muller et al.
(2013); Ulicn�a et al. (2006)]. Abbreviations: ACC: acetyl-CoA carbvoxylase; AMPK: 50 AMP-activated protein kinase; BAX: BCL-2-like protein 4; BCL-2: antiapoptotic B-cell
lymphoma 2; CAT: catalase; CCL2: chemokine (C-C motif) ligand 2; COX-2: cyclo-oxygenase 2; CPT1: carnitine palmitoyl-transferase; CXCL1: chemokine (C-X-C motif) ligand
1; ERK 1/2: extracellular signal-regulated kinases 1 and 2; GLUT-1/2/4: glucose transporter 1/2/4; GSH/GSSG: reduced/oxidized glutathione; HMG CoA: 3-hydroxy-3-methyl-
glutaryl-coenzyme A; IL-1b: interleukin 1 beta; IL-2/6/8: interleukin 2/6/8; iNOS: Inducible nitric oxide synthase; MAPK: mitogen-activated protein kinases; MDA: malondial-
dehyde; NF-kB: nuclear factor kappa-B; NO: nitric oxide; P: phosphorylation; PI3K/Akt: phosphatidylinositol 30 -kinase-Akt; PKCu: protein kinase C theta; PPAR-a/g :
peroxisome proliferator-activated receptor alpha/gamma; ROS: reactive oxygen species; SOCS3: suppressor of cytokine signaling 3; SOD: superoxide dismutase; TBARS:
thiobarbituric acid reactive substances; TNF-a: tumor necrosis factor alpha.
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activate AMPK that inhibits proteolytic cleavage and activation
of SREBP-1c and transcription of the lipogenic pathway in
insulin-stimulated hepatocytes, cultured in the presence of high
glucose concentrations (Li et al., 2011). AMPK suppression of
SREBP-1c by polyphenols could account for some of the bene-
ficial effects including enhanced glucose uptake and metabo-
lism, and improved dyslipidemia, hepatic steatosis, and insulin
resistance (Li et al., 2011).

Antiobesity

Pancreatic lipase (triacylglycerol acyl hydrolase) is a key
enzyme in the metabolism of dietary fat as it is responsible for
the hydrolysis of 40–70% of triglycerides into monoacylglycerol
and fatty acids, which are absorbed in the small intestine (Tucci
et al., 2010). A recent approach for the treatment of obesity
have involves inhibition of dietary fat absorption via inhibition
of pancreatic lipase to limit excess calorie intake (Birari and
Bhutani, 2007). Luteolin, orientin, and isoorientin displayed
pancreatic lipase inhibitory activity (Lee et al., 2010). Of these
compounds luteolin was the least effective, indicating that the
sugar moiety is an important structural feature for activity.
Similarly to a-glucosidase inhibitory activity, the position of
the sugar moiety on the A-ring is important, but in this case C-
glycosylation at the C-8 enhanced potency compared to C-gly-
cosylation at the C-6 position with orientin more potent than
isoorientin.

In vitro studies, performed in the 3T3-L1 preadipocyte cell
line, have also demonstrated that adipocyte development can
be inhibited by individual phenolic compounds found in rooi-
bos (Choi et al., 2006), as well as by aqueous rooibos extracts
(Sanderson et al., 2014). Mueller and Jungbauer (2009) found
that rooibos was a PPAR-g antagonis and thus is able to mod-
ulate PPAR-g, a key regulator of adipocyte differentiation.
Luteolin was demonstrated to be one of the constituents with
moderate PPAR-g binding activity (IC50 D 3.9 mM). Sander-
son et al. (2014) demonstrated that a fermented rooibos
extract suppressed the expression of PPAR-g and suppressed
adipogenesis in undifferentiated 3T3-L1 cells, while Mazibuko
et al. (2015) showed that this gene was activated both by rooi-
bos and aspalathin in fully differentiated 3T3-L1 cells. This is
an interesting finding in terms of adipogenesis as AMPK and
PPAR-g play central, yet opposing roles regulating fatty acid
synthesis and lipolysis, respectively (Daval et al., 2005). Acti-
vation of AMPK suppresses acetyl-CoA carboxylase (ACC)
activity, the de novo rate limiting enzyme for fatty acid syn-
thesis, regulated by PPAR-g (Georgiadi and Kersten, 2012).
Suppression of ACC decreases malonyl-CoA allosteric inhibi-
tion of carnitine palmitoyl-transferase I (CPT1) activity,
thereby enhancing fatty acid oxidation, while PPAR-g enhan-
ces fatty acid synthesis and adipogenesis (Rasmussen et al.,
2002; Zammit, 2008). This would suggest that rooibos poten-
tially suppresses differentiation of new adipocytes from adi-
pose-derived stem cells within the adipose tissue, while also
enhancing the lipid accumulation of existing adipocytes which
could have important implications for the prevention of obe-
sity driven by hyperplastic accumulation of adipocytes (Sun
et al., 2011). In vivo treatment of obese ob/ob mice with aspa-
lathin reduced fasting blood glucose levels, increased

adiponectin levels and reduced hypertriglyceridemia and
serum TBARS levels, a marker of ROS (Son et al., 2013).

Cardiovascular disease

Insulin resistance (IR) and resultant obesity are major risk fac-
tors for the development of T2D and CVD (Must et al., 1999).
In South Africa in 2000, 87% of T2D, 68% of hypertensive dis-
ease, 45% of ischemic stroke, and 38% of ischaemic heart dis-
ease, were attributable to an elevated body mass index (� 21
kg/m2) (Joubert et al., 2007). As discussed previously, inflam-
mation, hyperinsulinemia, and an atherogenic lipoprotein pro-
file, characteristics of IR and obesity, are causal factors in
endothelial dysfynction and subendothelium deposition of LDL
and the development atherosclerotic plaques (Yao et al., 2014).
Localized cellular inflammatory processes involving macro-
phages, leukocytes, and other inflammatory cells produce high
levels of proinflammatory cytokines and chemokines. Chemo-
tactic recruitment and accumulation of these cells into arterial
wall contribute directly to atherosclerosis progression (Yao
et al., 2014). Aspalathin and nothofagin reduced LPS-induced
upregulation of the endothelial adhesion molecules, vascular
cell adhesion molecule 1 (VCAM-1), intercellular adhesion
molecule 1 (ICAM-1) and E-selectin, thereby suppressing neu-
trophil adherence and migration across LPS-activated human
umbilical vein endothelial cells (HUVECs) (Lee and Bae, 2015).
Aspalathin and nothofagin also suppressed the inflammatory
process induced by LPS in these human endothelial cells by
reducing TNF-a and IL-6 secretion and inhibiting the activa-
tion of NF-kB and ERK1/2, initiators of proinflammatory
response (Lee and Bae, 2015). These anti-inflammatory and
vascular protective effects were confirmed in mice, manifested
as reduced pulmonary injury after LPS injection (Lee and Bae,
2015). In a limited human study involving 40 healthy partici-
pants, six cups of rooibos tea per day for six weeks reduced
serum levels of LDL-cholesterol and triacylglycerol and reduced
oxidative stress by significantly decreasing lipid peroxidation
(as measured by MDA) (Marnewick et al., 2011). In our own
laboratory rooibos and aspalathin were also shown to protect
cardiomyocytes isolated from diabetic rats against experimen-
tally induced oxidative stress, suggesting that the consumption
of rooibos, apart from reducing CVD risk, could also offer pro-
tection to the vulnerable cardiomyocyte in diabetics (Dludla
et al., 2014). Luteolin protected isolated rat cardiomyocytes
against ischemic reperfusion injury by inhibiting myeloperoxi-
dase and the inflammatory cytokines, IL-6, IL-1a, and TNF-a
(Sun et al., 2012). Similar cardioprotective effects against ische-
mia were demonstrated in an isolated heart and cardiomyocyte
model where luteolin improved cardiomyocyte contractile
function, reduced infarct size and cell death as measured by
LDH activity and decreased the rate of apoptosis by increasing
the BCL-2/Bax ratio (Wu et al., 2013).

Challenges to advance rooibos beyond a healthy
beverage

Current evidence suggests that rooibos C-glucosyl flavonoids
and PPAG play a major role in the health promoting properties
of its extracts and infusions. The plant material exhibits large
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inherent variation in phenolic content, with processing intro-
ducing further variation in phenolic content and profile. The
use of nonstandardized extracts and infusions and lack of char-
acterization of their phenolic composition using validated
methods in many studies to date pose a major challenge in
interpreting and validating results in follow-up studies. This
lack of important scientific information, often overlooked in
some papers, does not help to advance the knowledge base
required for proper substantiation of the positive and/or nega-
tive outcomes of such studies. Research to date using different
models confirmed rooibos as a healthy beverage, but it does not
meet the regulatory criteria required to make health claims for
a rooibos product. Future research should take this into
account when designing studies with this purpose in mind. An
alternative to the inherent compositional variation of rooibos is
the use of pure compounds or combinations of compounds,
isolated from the plant material, to ensure effective dose deliv-
ery and insight into their relative importance as rooibos bioac-
tive compounds. Given the existing knowledge base and their
predominance in rooibos, obvious choices are aspalathin,
PPAG, orientin and isoorientin.
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